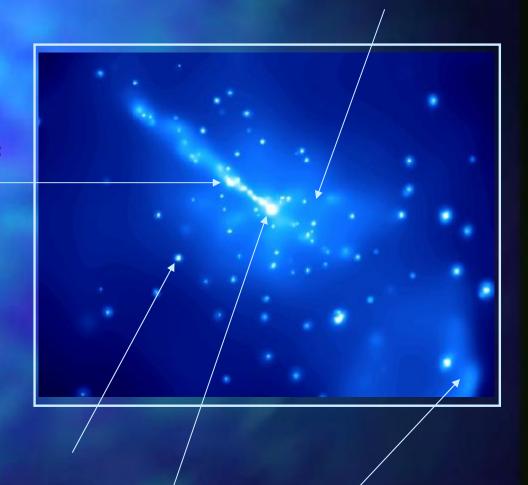
A Chandra and XMM-Newton X-Ray Spectral Analysis of the Core of Centaurus A

Daniel Evans, Ralph Kraft, Diana Worrall, Martin Hardcastle, Bill Forman, Christine Jones, Steve Murray

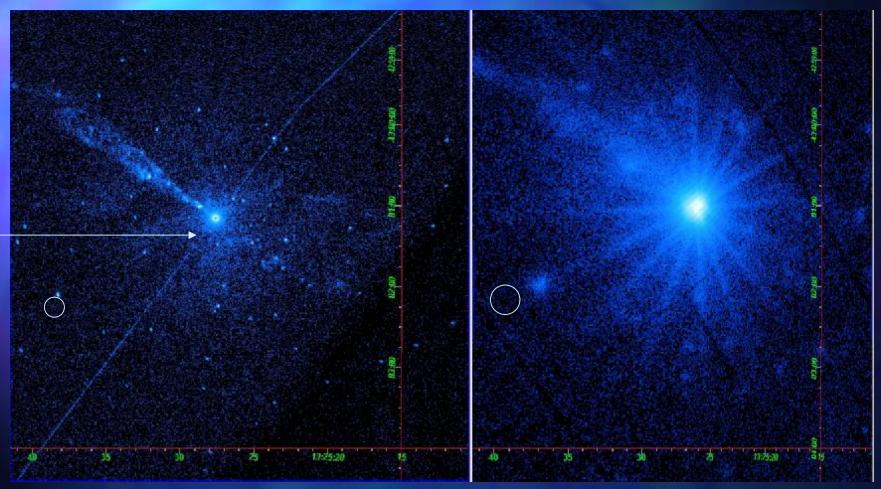
Harvard-Smithsonian Center for Astrophysics
University of Bristol


Outline

- Continuum spectrum
 - Hard power-law consistent with previous observations
 - Additional power-law consistent with VLBI jet
- Fluorescent lines
 - Resolve Fe Kα; detect Si
- Variability
 - Hard PL continuum varies over several months
 - No small (1000 s) variability
- Geometry of emission region
 - Fe Kα strength consistent with observed column

Cen A Overview

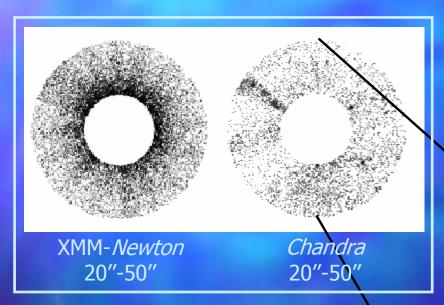
- Brightest extragalactic object in the hard X-ray sky
- Closest radio galaxy (d = 3.4 Mpc)
- Complex emission
- Ideal object to study
- Much-studied by earlier X-ray missions
- Rich gallery of radio features (jet, lobes, etc.)



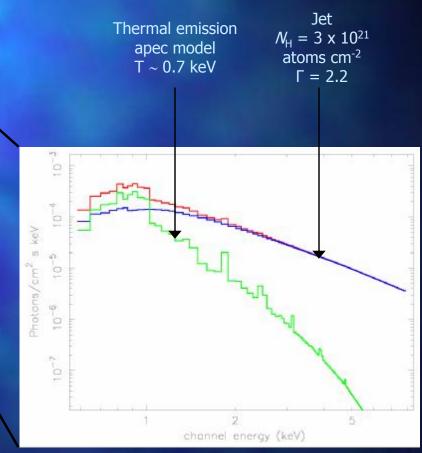
Observations

- Chandra:
 - 2 x ~ 48 ks (May 2001) separated by 12 days using HETGS
 - Three ACIS-I/S observations without gratings (Dec 1999, May 2000, Sep 2002)
- XMM-*Newton*:
 - ~ 23 ks (Feb 2001) and ~ 13 ks (Feb 2002) using EPIC CCD instrument (MOS1, MOS2, pn cameras)
- Core pile-up
 - Chandra ACIS non-grating image of the core heavily piled-up
 - XMM-Newton EPIC piled-up but use 20" 50" annular extraction region

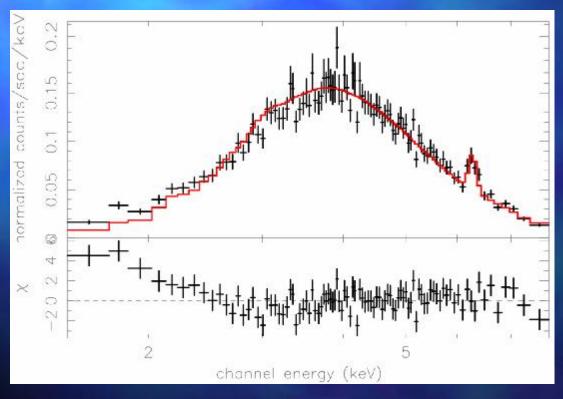
Observations



Chandra ACIS-S image (0.5–8 keV)

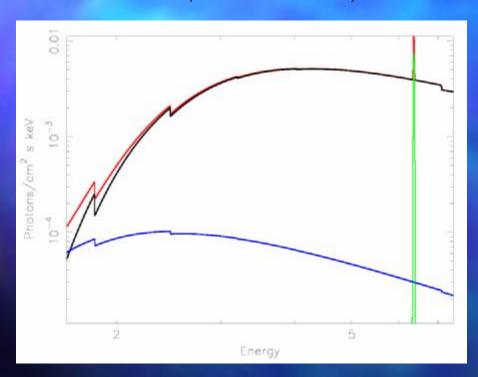

XMM-*Newton* (Obs. 1) MOS1, MOS2, pn combined image (0.5-10 keV)

Observations


Model diffuse components in XMMNewton annulus using Chandra ACIS observations

Continuum Spectrum

- Attempt to fit a heavily-absorbed ($N_{\rm H} \sim 10^{23}$ atoms cm⁻²) power-law ($\Gamma \sim 1.7$)
- Significant residuals below ~ 2.5 keV

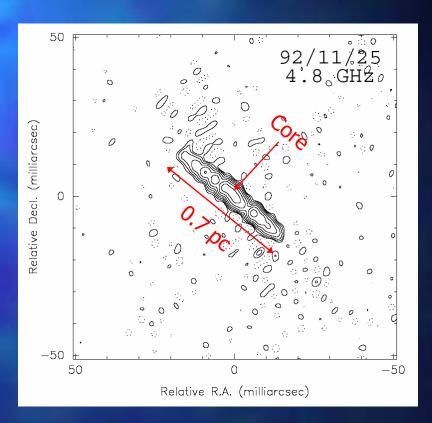


XMM-*Newton* MOS2 1st observation

Continuum Spectrum

Significant improvement (> 99% on an F-test) with the addition of a second power-law component

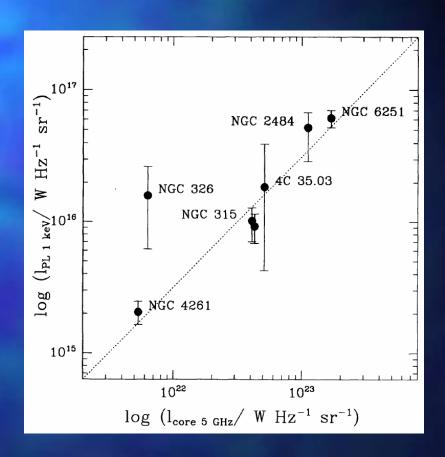
Key parameters:


Component	N _H (atoms cm ⁻²)	Г
Hard PL	$(10.04 \pm 1.22) \times 10^{22}$	1.64 ± 0.11
Soft PL	$(3.1 \pm 0.6) \times 10^{22}$	1.99 ± 0.51

Hard PL parameters consistent with e.g. RXTE, ASCA, BeppoSAX

Possible Origin of 2nd PL

- Luminosity of 10³⁹ erg s⁻¹
 ⇒ highly unlikely to have kpc-scale jet origin
- VLBI jet? Flux density ~few Jy at 4.8 GHz
- X-ray to radio ratio for 2nd PL and VLBI jet consistent with that of kpc-scale jet and VLA jet
- Investigating physical origin: SSC? IC? Synchrotron?



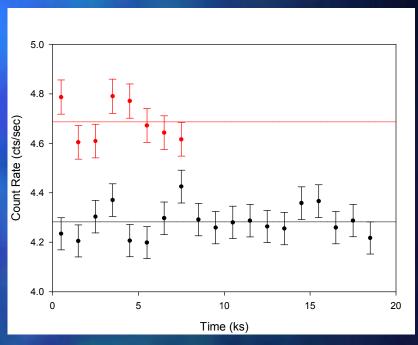
Taken from Tingay et al. (1998)

Possible Origin of 2nd PL

- VLBI variability of x3
- An explanation for single PL //_H variability seen in RXTE
- Mildly absorbed low energy power-law seen in other FRI galaxies with ROSAT

Taken from Worrall & Birkinshaw (1994)

Hard Continuum Variability

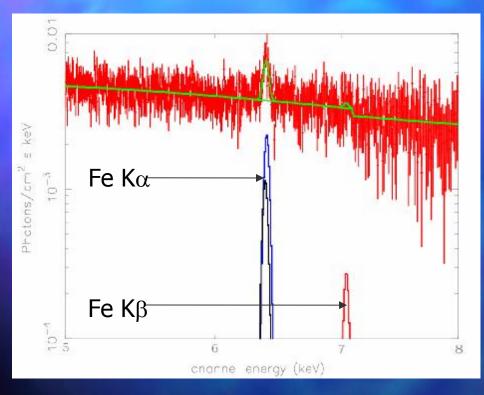

Inter-observation

Observation	4-8 keV absorbed/ unabsorbed flux (ergs s ⁻¹ cm ⁻²)
XMM- <i>Newton</i> 1 st	1.0 x 10 ⁻¹¹
Feb 2001	1.3 x 10 ⁻¹¹
Chandra HEG+1	9.0 x 10 ⁻¹²
May 2001	1.2 x 10 ⁻¹¹
XMM- <i>Newton</i> 2 nd	1.1 x 10 ⁻¹¹
Feb 2002	1.4 x 10 ⁻¹¹

~ 20% variability detected (consistent with previous observations) on timescales of months

Intra-observation

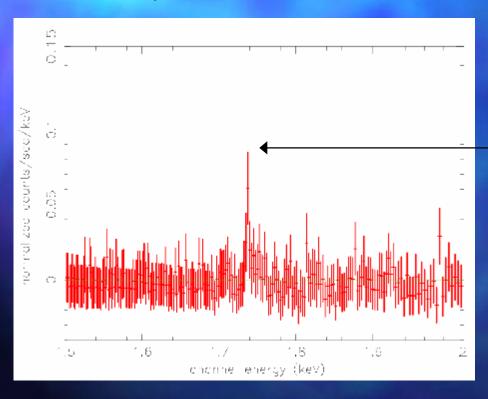
500-5000 sec time bins tried


XMM-Newton pn, both observations, 1000 sec bins

Consistent with no variability

Fluorescent Line Emission

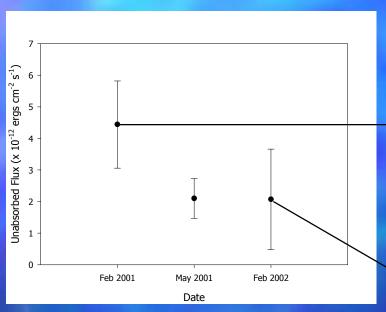
Chandra HETGS instrument of choice due to its high spectral resolution

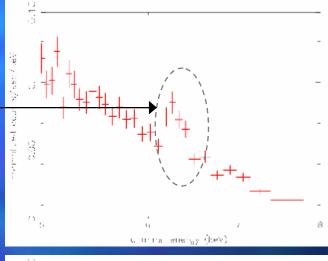


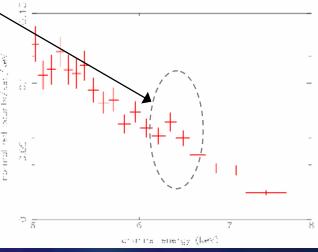
Joint HEG+1 and HEG-1 spectrum

- Fe K α_1 centroid = 6.404 \pm 0.002 keV (90% c.l.)) \Rightarrow fluorescence from cold, neutral material
- Fe K α is broadened $(\sigma = 20\pm10 \text{ eV } (90\% \text{ c.l.}))$ \Rightarrow v \sim 1000 km s⁻¹ \Rightarrow r \sim 0.1 pc $(M_{BH} = 3 \times 10^7 \text{ M}_{SUN})$
- Fe Kα eq. width ~ 80 eV (consistent with e.g. *ASCA*)
- 6.8 keV "ionized" Fe line claimed by BeppoSAX in Grandi et al. (2003) >> our 3σ upper limit

Fluorescent Line Emission


- Use MEG data to search for:
 - Emission lines (e.g. Si, S, Ca)
 - Absorption features

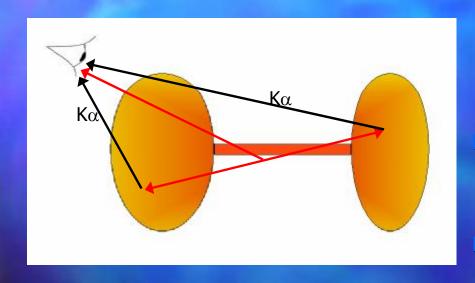

- Unresolved emission from neutral Si (1.74 keV)detected
- Eq. width ~ 38 eV, entirely consistent with ASCA
- No other features found conclusively


Fe Ka Variability

- Formally consistent with no variability
- If any variability present then on timescales of months

XMM-Newton Obs. 1

XMM-Newton Obs. 2



Geometry Of Emission Region

- Fe K $\alpha \sim 80$ eV equivalent width consistent with fluorescence from $N_{\rm H} \sim 10^{23}$ atoms cm⁻² that completely surrounds the nucleus (Miyazaki *et al.* 1996)
- Possibly a thick disk?

Geometry Of Emission Region

- Also consistent with fluorescence from $N_{\rm H} \sim 10^{24}$ atoms cm⁻² outside line of sight (e.g. molecular torus). Calculations based on Woźniak *et al.* (1998)
- No significant reflection component found ⇒ N_H cannot be too large (c.f. RXTE)
- r ~ 0.1 pc i.e. away from AGN ⇒ 4π thick disk covering model unlikely
- 4π covering model with distant
 Fe emitting region also
 unlikely (unification problems)

Summary

- Emission characterized by a heavilyabsorbed power law
- Second power-law component necessary, consistent with VLBI jet
- Fluorescent lines from cold, neutral matter
- Fe Kα light curve consistent with no variability
- Molecular torus?

